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A negative lift force (attraction) can be induced on a near-bed pipeline in a horizontal current
due to asymmetric flow. This negative lift force has a significant influence on the behaviour of
the near-bed pipeline, causing two remarkable failure patterns. One failure pattern is due to
stability loss, and the pipeline fully rests on the seabed. The other is due to the excessive stress
or deformation even if the pipeline is stable in a position between the original equilibrium
position and the seabed. A quantitative method to assess these two failure patterns by
combining boundary element and finite element methods is proposed in this paper. This is a
nonlinear fluid–structure interaction problem, and an iteration procedure is used herein to
solve it. Numerical examples reveal that there exists a critical current velocity, above which the
pipeline fails. The relationship between the critical velocity and the distance from the pipeline
to the seabed is given. # 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

Several environmental forces, among which are waves and currents (lift, drag, scour),
seafloor soil movements (mudslides, earthquakes, sand wave migration), and accidental
loadings (impact, underwater explosion), have significant influences on the behaviour of
submarine pipelines near the seabed. These forces might induce excessive stresses in pipes
in unfavorable cases, causing pipeline failures. As a complicated fluid–structure
interaction problem, the behaviour of submarine pipelines subjected to various loads
has been extensively studied both theoretically and experimentally. Freds�e & Hansen
(1987), Magda (1997) and Sarpkaya & Isaacson (1981) presented forces on submarine
pipelines in steady flows and in waves, respectively. The hydrodynamic forces on
submarine pipelines in waves/currents have been investigated by Neill & Hinwood (1998),
Damgaard & Whitehouse (1999), and Sabag et al. (2000). Chiew (1990), Grass &
Hosseinzadeh-Dalir (1995), and

-
Cevik & Y .uuksel (1999) discussed the scour depth under

pipelines. In addition, Bijker (1990) studied the pipeline-sand wave interaction. Takahashi
& Bando (1998) and Kershenbaum et al. (2000) presented the behaviour of marine
structures under seismic faults. The response of free-span pipelines to impact was studied
by Chung & Cheng (1996), and the response of submarine pipelines to underwater
explosion was studied by Zong & Lam (2000a).
In this paper, a supported submarine pipeline with a small gap between the original

equilibrium position and the seabed is studied. When a submarine pipeline in a
horizontally steady current is far away from the seabed, it is not influenced by the seabed
0889-9746/02/081177+15 $35.00/0 # 2002 Published by Elsevier Science Ltd.
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and experiences a zero net force in the vertical direction due to the symmetry of the flow.
However, when the pipeline is near the seabed, the presence of the seabed changes the
symmetric flow scenario, by assigning a higher velocity to the flow between the pipeline
and the seabed and a lower velocity to the flow above the pipeline. When the gap between
the pipeline and the seabed is very narrow, a very high flow velocity is expected from the
continuity equation. From Bernoulli’s equation, the pressure in the gap between the
pipeline and the seabed is very low, and the pressure of the flow above the pipeline is high,
resulting in a downward force (Milne-Thomson 1968; Zdravkovich 1985; Kalghatgi &
Sayer 1997) on the pipeline (see Figure 1).
Some early experimental investigations (Bagnold 1974; Bearman & Zdravkovich 1978;

Sarpkaya & Isaacson 1981) have been performed to evaluate forces on cylinders some
distance away from the seabed. From the turbulent spectra, it is concluded that the vortex
shedding does not take place at the downstream of the pipe at small gap ratios. This means
that the flow around the pipeline very near the seabed can be considered as a steady
problem. In addition, Grass et al. (1984) investigated effects of the bed proximity and
velocity gradients in the approaching bed boundary layer. They found that small gap
effects were much complicated by the presence of any boundary layer in the approaching
bed shear flows. Freds�e & Hansen (1987) investigated effects of shear in the incoming
flow, and Reynolds number. They found that shear in the incoming flow could influence
the lift force, and the effect of the Reynolds number was much smaller on the lift force,
because an evenly distributed wake pressure does not contribute to the lift force. This
conclusion was also reached by Aschenbach (1969). Moreover, viscosity is restricted to a
thin boundary layer, and effects of viscosity are smaller on the vertical force. Hence, in this
paper, we restrict ourselves to the vertical force, which results from the imbalance between
the pressures on the top of and below the pipeline. The fluid is here assumed to be ideal,
and effects of the boundary layer and the approaching bed shear flows are neglected.
Potential flow theory is used in this paper. Therefore, when a gap exists, the downward

force acting on the pipeline is in fact the same as the lift force, but in the opposite direction
(negative lift force). The attracting force of the seabed tends to pull a submarine pipeline
down to the seabed, exerting high bending stresses in the pipeline. This fluid–structure
interaction problem is nonlinear, and is studied in this paper. Our investigations have
revealed that the negative lift force is so large that it is likely that the submarine pipeline
could fail even in normal operational environments. When potential flow theory is used,
the analytical solution for the lift force is available (M .uuller 1929; Grass et al. 1995), and
the formulation of the complex potential is obtained as a summation of an infinite series.
In this paper, two numerical methods, the boundary element method (BEM) and the finite
Attraction (negative lift force)

Current

Figure 1. The negative lift for a submarine pipeline in a current.
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element method (FEM), are also investigated and used to obtain the negative lift force on
a pipeline. FEM is used to discretize the pipeline response equation. By equating the fluid
force to the bending force, we obtain a nonlinear fluid–structure interaction equation
governing the near-bed pipeline motion in a current. An iterative scheme is used, and two
failure modes (instability failure and strength failure) are discussed. Numerical examples
show that a bifurcation occurs between different failure modes. This means that there
exists a critical current velocity, above which a near-bed pipeline will become unstable and
finally fully rest on the seabed. Below the critical velocity, the near-bed pipeline, even in
the stable state, may also fail due to high bending stresses. The relationship between the
critical velocity and the gap between the pipeline and the seabed is given. Finally, useful
information for the pipeline design and operation is provided.

2. CURRENT FORCE ON SUBMARINE PIPELINES IN SEMI-INFINITE WATER

2.1. Governing Equation

Consider a circular steel pipe covered with a layer of reinforced concrete. The coordinate
system is shown in Figure 2(a) with the x-axis coincident with the undeformed pipeline
axis, the y-axis pointing outward horizontally, and the z-axis in the deflection direction.
Suppose that the pipeline is in a steady current. The current velocity is U0, and the distance
between the central line of the undeformed pipeline and the seabed is D0. Suppose the pipe
length L is much greater than the pipe outer radius Rc, i.e., L4Rc, then the pipe can be
simplified as an Euler beam fixed at both ends, and its deflection is described by wðxÞ.
From the above definition, we have DðxÞ ¼ D0 � wðxÞ, and assume that wðxÞ is small
relative to the pipe length L.
In this paper, the fluid is assumed irrotational and incompressible, and thus there exists

a potential fðx; y; zÞ due to the presence of the pipe, satisfying
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Figure 2. A submarine pipeline in a current.
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throughout the fluid domain, with boundary conditions

@f
@y

¼ U0 at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
! 1; ð2Þ

@f
@n

¼ 0 on the pipe surface; ð3Þ

where n ¼ ðnx; ny; nzÞ denotes the three-dimensional unit vector normal to the pipe
surface.
A lot of computational effort is needed to solve the above equations due to the nature of

the three-dimensional flow. However, the computation can be greatly simplified by using
the slenderness assumption (Newman 1978) defined by the following relations:

e ¼ Rc=L51; nx ¼ OðeÞ; ny ¼ Oð1Þ; nz ¼ Oð1Þ: ð4Þ

On this basis, near the body, we have

@f
@x

5
@f
@y

;
@f
@z

� �
;

@2f
@x2

5
@2f
@y2

;
@2f
@z2

� �
: ð5Þ

Thus, Laplace’s equation is reduced to a two-dimensional form

@2F
@y2

þ
@2F
@z2

¼ 0; ð6Þ

where F replaces the three-dimensional potential,

F ¼ fðy; z; xÞ: ð7Þ

Here the dependence on x is included to emphasize that this potential will vary slowly
along the length of the structure, as a result of the change in the lateral deformation.
Boundary conditions (2) and (3) can then be replaced by

@F
@y

¼ U0 at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
! 1; ð8Þ

@F
@N

¼ 0 on the pipe surface: ð9Þ

Here N ¼ ðNy; NzÞ denotes the two-dimensional unit vector normal to the pipe surface in
the y–z plane. The potential F corresponds to the solution of the two-dimensional flow
problem at each section along the pipe length, and thus is easily found.

2.2. Current-Induced Fluid Force

Based on the assumptions above, the potential flow around a cylinder placed near a wall
can be readily found (M .uuller 1929). The analytical solution to equations (6), (8) and (9), in
terms of a complex potential o ¼ oðsÞ, is given by

o ¼
X1
j¼0

mj

s� Sj
þ

mj

s� %SSj

 !
; ð10Þ

where s is the complex coordinate

s ¼ yþ iz; ð11Þ
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and

m0 ¼ U0R
2
c ; mjþ1 ¼ mj

R2c

ð2D0 � YjÞ
2
; ð12Þ

Y0 ¼ D0; Yjþ1 ¼ D0 �
R2c

2ð2D0 � YjÞ
; ð13Þ

Sj ¼ iYj ; %SSj ¼ �iYj : ð14Þ

The complex potential, (equation (10), describes the flow with a farfield velocity U0 around
a cylinder with a radius Rc, and the centerline of the cylinder is located at the distance D0

away from the seabed. Using this complex potential, we can obtain the negative lift force.
The boundary value problem defined by equations (6)–(9) can also be effectively solved

using the boundary element method (BEM). In the BEM formulation, the semi-infinite
fluid domain is approximated by a rectangular domain O (size 20R� 20R) as shown in
Figure 3. Define G ¼ @O, and the boundary of O is composed of the boundaries of the
water domain under consideration, the pipe surface and the seabed. Then the boundary
conditions can be rewritten as

@F
@N

¼ �U0 on the inflow boundary;

@F
@N

¼ U0 on the outflow boundary;

@F
@N

¼ 0 on the pipe surface; ð15Þ
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Figure 3. The BEM mesh and boundary conditions.
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The boundary is discretized into m constant boundary elements. The potential F can be
easily solved using BEM (Brebbia 1978). From Bernoulli’s equation, the flow pressure p on
the pipe surface can be obtained, and then we get the fluid force f induced by the current.
The following dimensionless coefficients are defined:

c ¼
2f

rAU2
0

; d ¼
DðxÞ � Rc

2Rc
; ð16; 17Þ

where A is the cross-section area of the pipe. The results obtained from the analytical
solution [equation (10)] and BEM are shown in Figure 4. For comparison, FEM is also
used to obtain the fluid force. The FEM mesh is shown in Figure 5. The FEM results are
also shown in Figure 4. From this figure, we conclude that both the BEM and FEM results
and the exact solution obtained from equation (10) are in very good agreement.

2.3. Rational Approximation of Fluid Force

Although there exists an analytical solution of equation (10), it converges slowly.
Therefore, for computational efficiency, a rational approximation of the fluid force is
developed based on the BEM results.
From Figure 4, we see that the resultant force coefficient c on a pipe section is only

a function of d. To save computational cost in the analysis of fluid–structure
interaction later, we may express the relationship between canddthrough an explicit
equation. Suppose the relation between them can be approximated by the following
rational function:

cðdÞ ¼
A1d

2 þ A2d þ A3

A4d3 þ A5d2 þ A6d
: ð18Þ

There are two reasons for using the above form. One is that c is inversely dependent on d
from the numerical results (see Figure 4). To meet this requirement the denominator (a
third-order polynomial) is one order higher than the numerator (a second-order
polynomial). The other reason is that polynomials are simple, so both denominator and
numerator are assumed polynomials.
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Figure 5. The FEM mesh.
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To obtain coefficients A1; . . . ; A6, we define the following norm as an error indicator:

eðA1; A2; A3; A4; A5; A6Þ ¼
Xn
i¼1

cðdiÞ � ciBEM
� 	2

; ð19Þ

where cðdiÞ and ciBEM are calculated from equations (18) and (16), respectively. This is an
unconstrained minimization problem. The standard polytope optimization method
(Nelder & Mead 1965) is used to find the minimum of the function eðA1; . . . ; A6Þ of six
variables. The optimization results of A1–A6 are listed in Table 1.
In this paper, a higher-order form of d and c is also tried. It is found that there is not a

great difference between the higher-order form and the form presented above. The results
of this approximate fit are shown in Figure 4, where they are also compared with the exact
solution (M .uuller 1929), and the BEM and FEM results. We see that these results are in
very good agreement. Using this fitting curve, forces for every iteration step can easily be
obtained.

3. THE NONLINEAR RESPONSE OF THE PIPE

3.1. Pipe Modelling

Since the pipe length L5Rc and D05L, the pipe is then simplified as an Euler beam fixed
at both ends. Using the coordinate system in Figure 2(a), the response of the pipe is given
by

EI
d4wðxÞ
dx4

¼ f ðxÞ; 0
 x 
 L; wðxÞ 
 D0; ð20Þ

where w(x) is the deflection of the pipe. The equivalent bending stiffness EI is defined by

EI ¼ EcIc þ EsIs; ð21Þ

where EcIc and EsIs are stiffnesses of concrete and steel, respectively.



Table 1

The optimization results

A1 A2 A3 A4 A5 A6 Error (e)

2�2327510 12�5462900 0�0243700 0�7668064 0�4358999 0�0236994 0�46777
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From equation (16) and the fitting result, we obtain the fluid force f (x),

f ðxÞ ¼ 1
2
rAU2

0cðdÞ; ð22Þ

where

d ¼
DðxÞ � Rc

2Rc
¼

D0 � wðxÞ � Rc

2Rc
:

The force f(x) is a non-linear function of the deflection w(x). Therefore, the pipe deflection
equation (20) is nonlinear.
In order to solve equation (20), the pipe is discretized using equal length elements. Using

Hermite cubic interpolation functions (Reddy 1993), the FEM equation of the pipe is

A B

BT C

" #
W

Y

( )
¼

F

M

( )
; WD0; ð23Þ

where W, "EE, F and M are the displacement vector, the bending rotation vector, the
external force vector and the moment vector, respectively. F is determined from equation
(22), andM is the corresponding equivalent moment. The elements of the sub-matrices A,
B and C, which depend on the elastic beam characteristics, are defined as

ai; i�1 ¼ �6ai�1; ai; i ¼ 6ðai�1 þ 6aiÞ; ai; iþ1 ¼ �6ai;

bi; i�1 ¼ �3ai�1l; bi; i ¼ �3ai�1l þ 3ail; bi; iþ1 ¼ 3ail;

ci; i�1 ¼ ai�1l2; ci; i ¼ 2ai�1l2 þ 2ail2; ci; iþ1 ¼ ail2;

where ai ¼ 2EI=l3, a0 and an are defined to be zero, and l is the element length.
The response of the pipe can be obtained by solving nonlinear equation (23). Then,

according to material mechanics, the cross-section maximum stresses are given by

ðSsÞmax ¼ EsRs
d2wðxÞ
dx2

¼ EsRs w1
d2H1

dx2
þ y1

d2H2

dx2
þ w2

d2H3

dx2
þ y2

d2H4

dx2

� �
;

ð24Þ

ðScÞmax ¼ EcRc
d2wðxÞ
dx2

¼ EcRc w1
d2H1

dx2
þ y1

d2H2

dx2
þ w2

d2H3

dx2
þ y2

d2H4

dx2

� �
;

where (Ss)max and (Sc)max, Es and Ec, and Rs and Rc are the maximum stresses, elastic
moduli, and the radii of the steel and concrete pipes, respectively. The second-order
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derivatives of Hermite cubic interpolation functions are:

d2H1

dx2
¼ �

6

l2
1� 2

x� xe

l

� �
;
d2H2

dx2
¼ �

2

l
2� 3

x� xe

l

� �
;

d2H3

dx2
¼ �

d2H1

dx2
;
d2H4

dx2
¼ �

2

l
1� 3

x� xe

l

� �
where xe is the coordinate value of the left node of the element.

3.2. Solution of the Nonlinear Equation Using Iterative Method

Because equation (23) is nonlinear, it cannot be solved directly. An iterative scheme is used
to obtain the solution. The following iterative formula is used:

Wnþ1

Ynþ1

( )
¼

A B

BT C

" #�1
FðWn;YnÞ

MðWn;YnÞ

( )
; ð25Þ

where superscript n and n+1 denote the nth and (n+1)th iterative steps, respectively.
A complete pipe response simulation requires the establishment of static initial

conditions, namely the equilibrium configuration due to static loads on the pipe. At the
first step, the pipe is in its undeformed orientation, and the distributed force is uniform, so
we can easily get the nodal equivalent forces, and then the deflection of the first step, W1.
However, when the pipe has a small deflection, the distributed force on the pipe will not be
uniform but a function of W. The equivalent nodal forces are difficult to obtain directly.
Therefore, Gauss quadrature (Reddy 1993) is used to get the nodal equivalent forces.
The iteration stops when ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1
ðwiþ1

j � wi
jÞ
2

r
e; ð26Þ

where n is the number of nodes used in FEM, wi
j andw

iþ1
j are the deflection results of the

ith and (i+1)th iteration steps, respectively. e is a specified accuracy tolerance. In this
paper, we take e ¼ 10�6.
The flowchart of the solution of the nonlinear fluid–structure interaction problem is

given in Table 2.

3.3. Failure Analysis

The term on the right-hand side of equation (23) is a nonlinear function of the deflection,
which has a significant influence on the behaviour of a near-bed pipeline. It becomes very
large as the gap between the pipeline and the seabed is very small, and approaches zero if
the gap is very large (see Figure 4). Hence, the pipeline is always attracted to the seabed.
One of nonlinear effects due to the seabed attraction is that the pipeline suddenly loses its
stability and sticks to the seabed, once the current velocity exceeds a critical velocity or
once the gap between the pipeline and the seabed is too small. Except for the two ends, the
entire pipeline tends to stick to the seabed. This causes excessively high stresses at both
ends. The two-dimensional assumption used in this paper will predict infinitely large
stresses at both ends. Therefore, the stability loss due to high current velocities or small
gaps causes so high stress levels at both ends that they exceed allowable stresses, resulting
in pipeline failure. This failure pattern is purely due to stability loss, and thus it is an
instability failure pattern.



Table 2

The flowchart of solution of the nonlinear fluid–structure interaction problem

1. Determine the stiffness matrix in equation (23)
2. Give nodal displacement Wn, nodal rotation Yn, nodal force Fn and nodal moment Mn

3. Obtain nodal Fn+1 and nodal moment Mn+1 from equation (22) and Gauss quadrature
4. Obtain nodal displacement Wn+1 and nodal rotation Yn+1 from equation (25)

5. If
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1 ðw
iþ1
j � wi

jÞ
2

q
e, go to 7

6. Go to 2
7. If Wn+1=D0�Rc, then unstable

If Wn+15D0�Rc, end.

Table 3

Deflections of the pipe at different current velocities (D0=2Rc)

U0 (m/s) WL/2(m) No. of iteration steps

1�0 0�0020 4
3�0 0�0151 6
5�0 0�0435 9
7�0 0�0949 13
9�0 0�2111 37
9�2 0�2372 61

9�2944 0�2821 905
9�2945 0�5000 Unstable
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Figure 6. The deflection of the mid-span of the pipe (D0=2Rc) as a function of U0.
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If the current velocity is below the critical velocity, the pipeline under consideration
deforms in such a way that it finally stabilises at a position between the seabed and the
original equilibrium position. In this case, the strength analysis is the same as that without
considering the seabed. The strength failure occurs if the maximum stress (Ss)max in steel



0.0
0 5 10 15 20

-0.5

-0.4

-0.3

-0.2

-0.1

0.0
0 5 10 15 20

x(m)

x(m)

stable position

stable position

W
(m

)
W

(m
)

iteration step 1

iteration step 1

-0.5

-0.4

-0.3

-0.2

-0.1

(a)

(b)

Figure 7. (a) The deflection of the pipe at successive iteration steps (U0=9�0m/s). (b) The deflection of the pipe
at successive iteration steps (U0=10�0m/s).

D0 /2Rc

0

2

4

6

8

10

C
ri

tic
al

ve
lo

ci
tie

s
(m

/s
)

0.5 0.6 0.7 0.8 0.9 1.0

Figure 8. The critical velocities Ucb of the instability failure.

NON-LINEAR FLUID–STRUCTURE INTERACTION 1187
exceeds its yielding stress Ys (i.e., Ss5Ys), or the maximum stress (Sc)max in concrete
exceeds its yielding stress Yc (i.e., Ss5Yc), or the maximum deflection Wmax of the pipe
exceeds its allowable deflection Yw.
Therefore, there are two failure patterns. One is the instability failure due to the stability

loss under high current velocities or small gaps. The other is the strength failure, which
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includes yielding failure and deflection failure, due to high stresses or large deflections even
when the pipeline is still stable.

4. RESULTS AND ANALYSIS

Consider the following example: L=20m, Es=2�11� 10
11N/m2, Rs=0�4m, ts=0�012m

(steel pipe thickness), Ec=2.5� 10
10N/m2, Rc=0�5m, rs=7800 kg/m

3 (steel density),
rc=2400 kg/m

3 (concrete density), D0=2Rc. The pipe is discretized using 20 equal length
elements. The nominal values for the strength parameters are as follows: Ys=2�5� 10

8N/
m2, Yc=2�5� 10

7N/m2, and Yw=0�004, L=0�08m.
First, we use the iteration scheme [equation (25)] to obtain the relation between the

current velocities U0 and the mid-span deflections WL/2. The values of the mid-span
deflection at different current velocities are given in Table 3 and Figure 6. As the current
velocity increases, the mid-span deflection also increases until the point where
Ucb=9�2945m/s. Below this velocity, the iteration scheme [equation (25)] converges to a
stable position between the seabed and the original position as shown in Figure 7(a).
Above this velocity, the entire pipeline, except for a small portion near both ends, sticks to
the seabed as shown in Figure 7(b).
It is clear from the above discussion that the critical velocity Ucb depends on the gap

between the pipeline and the seabed. Such a relation is obtained by repeatedly using
equation (25) for different values of D0, and is plotted in Figure 8. Physically, a small gap
between the pipeline and the seabed will induce a high force on the pipeline as seen from
equation (18) or Figure 4. The required current velocity to push the pipeline to stick to the
seabed is then low. This relationship is shown in Figure 8, where Ucb is a monotonically
increasing function of D0.
In the above, only the instability failure mode was discussed. We now turn to the

discussion of the strength failure mode. The stress distributions in the pipe are obtained
utilizing equation (24). The stress results for U0=5.0m/s are plotted in Figure 9. As
expected, the maximum stresses are found at both ends of the pipe. The maximum stresses
of steel and concrete pipes at different current velocities, U0, with D0=2Rc, are shown in
Figure 10. From this figure, it is seen that the stresses of both steel and concrete pipes
increase monotonically with the current velocity. When the velocity increases to a specific
value, the maximum stress equals the yielding stress. This value, shown in Figure 10, is the
x(m)
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Figure 9. The stress distributions along the pipe (U0=5�0m/s).
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critical value for the strength failure. The critical velocity for the strength failure of the
steel pipe is defined as Ucys [Figure 10(a)] and the critical velocity for the strength failure of
the concrete pipe is defined as Ucyc [Figure 10(b)]. Meanwhile, the maximum deflection is
also an increasing function of the current velocity. Once the current velocity is above the
critical value, denoted by Ucw [Figure 10(c)], the pipeline also fails due to the
overdeformation.
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In the above, four critical current velocities are defined to describe four failures. The
influence of D0 on the four critical velocities (Ucb, Ucys, Ucyc, Ucw) is plotted in Figure 11.
The most interesting feature in the figure is the existence of bifurcation at points A, B and C.
From point O to point A on the curve, the instability failure mode dominates strength
failure modes. Point A is a bifurcation point, beyond which the concrete pipe fails before the
pipeline loses stability, and the instability failure mode will no longer occur from point A.
It should be noted that in our analysis the fluid force becomes infinite when D0 ! 0.

This is because the two-dimensional inviscid simplification is used. If a three-dimensional
model is used for the fluid domain, the force will be finite when D0 ! 0 (Zong & Lam
2000b). The two-dimensional model overestimates the loading on the pipe. In addition,
conditions of different failure modes are obtained in this paper without considering their
interactions. The interactions between the different failure modes will be studied in our
future work.

5. CONCLUSIONS

A nonlinear fluid–structure interaction analysis is proposed in this paper to assess the
behaviour of near-bed submarine pipelines in a horizontal steady current. From the
studies in this paper, it is concluded that
(i) the seabed has a significant influence on the behaviour of near-bed pipelines in a
current. There exist two failure modes: stability loss and strength failure;
(ii) there exists a critical current velocity beyond which pipelines fail either in the mode of
stability loss or in the mode of strength failure; and
(iii) when the gap is small, the stability loss dominates the strength failure. As the gap
increases, the occurrence of strength failure becomes more likely than stability loss.
The effects of three dimensionality and viscosity will be considered in our future work.
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